题目大意:
$f[i][j]$ 表示前 $i$ 个物品还有 $j$ 个空挂钩的最大价值。
注意先按照每个物品的挂钩数从大到小排序,不然两个本来可以一起挂上的物品会被误判断为只能挂一个。
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N = 2005;
int n, f[N][N], ans;
struct Node {
int a, b;
bool operator < (const Node &rhs) const {
return a > rhs.a;
}
} c[N];
int max(int x, int y) {
return x > y ? x : y;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d%d", &c[i].a, &c[i].b);
std::sort(c + 1, c + n + 1);
memset(f, 128, sizeof f);
f[0][1] = 0;
for (int i = 1; i <= n; ++i) { //前i个物品
f[i][n] = f[i-1][n];
for (int j = n - c[i].a + 1; j <= n; ++j)
f[i][n] = max(f[i][n], f[i-1][j] + c[i].b);
for (int j = 0; j < n; ++j) { //空挂钩的数量
f[i][j] = f[i-1][j];
if (j >= c[i].a - 1) f[i][j] = max(f[i][j], f[i-1][j-c[i].a+1] + c[i].b);
}
}
for (int j = 0; j <= n; ++j) ans = max(ans, f[n][j]);
printf("%d\n", ans);
return 0;
}