题目大意:给定 $n$ 个连续的点,每个点有一个权值 $v_i$,不能选取连续的超过 $k$ 个点,问最大收益。$n \leq 100000, 0 \leq v_i \leq 10^9$
设 $f[i]$ 表示 $i$ 不选且之前的选取都合法情况下答案损失的最小值,有
#include <cstdio>
#include <algorithm>
using std::max;
typedef long long LL;
const int N = 100005;
int a[N], q[N], head = 1, tail, n, k; LL f[N], ans, sum;
int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; ++i) scanf("%d", &a[i]), sum += a[i];
for (int i = 1; i <= k + 1; ++i) {
f[i] = a[i];
while (head <= tail && f[q[tail]] >= f[i]) --tail; //不要忘记更新
q[++tail] = i;
}
for (int i = k + 2; i <= n; ++i) {
while (head <= tail && q[head] + k + 1 < i) ++head;
f[i] = f[q[head]] + a[i];
while (head <= tail && f[q[tail]] >= f[i]) --tail;
q[++tail] = i;
}
for (int i = n - k; i <= n; ++i) ans = max(ans, sum - f[i]);
printf("%lld\n", ans);
return 0;
}
时间复杂度 $O(n)$